
The functional dependence of the cohesive energy on coordination in transition-metal systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 3939

(http://iopscience.iop.org/0953-8984/6/21/018)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 12/05/2010 at 18:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/21
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I .  Phys.: Condens. Matter 6 (1994) 3939-3944. Rinted in the UK 

The functional dependence of the cohesive energy on 
coordination in transition-metal systems 
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Departamento de Fkica. Cornisi6n Naeional de Energfa At6mica, Avenida del Libertador 8250, 
1429 Buenos Aires, Argentina 
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Abstract The energy of an atom as a function of its coordination number has been calculated 
within the tight-binding model for added vacancies in FCC and BCC lattices considering s and 
d orbitals. We show that the dispersion due to the different possible topologies of nearest- 
neighbour vacancies is larger when d bands are replaced by five degenerate s bands in simplified 
models. We also show that when calculations are performed going beyond the second moment 
the cohesive band energy follows approximately a square-mt dependence with coordination for 
s bands but that for d bands it has a different dependence. 

Besides the case of a bulk atom with different numbers of nearest-neighbour vacancies, 
the cases of surfaces and lattices containing uniformly distributed vacancies have also been 
considered. 

1. Introduction 

During the last decade different approaches to approximate the total energy of metallic 
systems have been introduced in order to obtain suitable potentials for computer simulations 
[ I ,  2, 3, 4. 51. In a recent paper Hakkinen et al [6] have compared the results obtained 
by one of these approximate methods, the effective-medium theory, with exact results for 
the band energies, calculated within the same simple model, namely the nearest-neighbour 
s-type tight-binding Hamiltonian for half filliig. In that work the covalent bond energy 
(band energy) of an atom, E,, was calculated by the moments method as a function of 
all topographically different configurations of its nearest-neighbour vacancies in the whole 
range of coordination for the FCC lattice. The weighted, averaged energy curve was shown 
to follow closely a square-root dependence of coordination predicted by the tight-binding 
theory in the second-moment approximation. 

We are interested in transition-metal systems whose properties are to a considerable 
degree dominated by d-band electrons. It is assumed, especially when doing molecular 
dynamics in the second-moment approximation, that d bands can he replaced by five 
degenerate s bands and thereafter we can take for the covalent bond energy of an atom 
a square-root dependence of the second moment of the local density of states (effective 
coordination number). In this contribution we go beyond the s-band model, take into 
account the symmetry of the d orbitals and consider different band fillings in order to 
calculate E ,  as a function of coordination number, for both FCC and BCC lattices. We use 
the recursion method [7] to perform the calculations. We show that when local charge 
neutrality is required E, shows an approximate square-root dependence for the s band, but 
for d bands Ec = AC; with n approximately $ and CI the number of nearest neighbours left 
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when vacancies are introduced in the nearest-neighbour shell and only nearest-neighbour 
interactions are considered. As we shall see C1 is actually the effective coordination number, 
which is proportional to the second moment of the local density of states 

By the same method we study the covalent bond energy for surface atoms with different 
coordination and finally a lattice which contains uniformly distributed vacancies. 

The situations considered in this paper are very simple (and quite uuphysical) as the 
number of neighbours changes but there is no relaxation in the structure. We do this to be 
able to compare approximations with ‘exact’ tight-binding results. 

2. Method of calculation 

We consider s- or d-band tight-binding Hamiltonians of the form 

where c y  ( c y )  is the creation (annihilation) operator of an electron state on lattice site i, 
m denotes the band and f;”” are the hopping elements of the Hamiltonian. E? are the site 
energies. In almost all cases only nearest-neighbour interactions are considered. Due to 
screening effects we expect charge transfers among atoms in metallic systems to be very 
small. Actually, ab initio calculations show that transition-metal atoms in configurations of 
lower coordination than in the bulk, i.e. surfaces, have nearly the same d-band occupations 
as in the perfect bulk. In a first approach we can take this into account by requiring 
local charge neutrality. The Hamiltonian is then solved iteratively by shifting the diagonal 
elements corresponding to the atom for which the covalent bond energy is being calculated, 
that is 

€ y = E $ + O 1 .  (2) 
By local charge neutrality we mean that the parameter 01, independent of orbital 

symmetry, is adjusted so that there is no atom-to-atom charge transfer, within an error 
of 10-4e. 

The covalent bond energy of the ith atom is given by [4] 

where ny(E) is the local density of states on the mth orbital of the ith atom. To obtain 
n y ( E )  we used the recursion method within the Green-function formalism. In all cases four 
levels (eight moments) of the recurrence expansion were considered ensuring a convergence 
error of less than 0.05% in the bulk covalent bond energy independent of band filling. We 
used the standard quadratic termination for the continued fraction expansion with the final 
coefficients equal to the limiting ones of the bulk material. The values used for the nearest- 
neighbour two-centre integrals are ssu = -W/16 for s bands, ddu = -W/8, ddir = W/16, 
dd8 = 0 for FCC d bands and ddu = -W/6.5, ddrr = W/13 and dd8 = 0 for BCC d bands, 
HV being the bandwidth. 

3. Resnlts and discussion 

We calculated the covalent bond energy for an atom as a function of coordination and band 
filling for FCC and BCC structures considering three situations. The first case was that of 
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a bulk atom with nearest-neighbour vacancies in the corresponding lattice structure and 
considering all topographically different configurations for a given coordination number as 
in [6]. The second case was that of a surface atom for different surface orientations, which 
implies different coordination. In this situation there is only one possible topology for each 
coordination. For these two cases the Fermi level of the system is the bulk Fermi level. 
The third case was a system consisting of atoms and randomly distributed vacancies, a ‘hole 
net’ for three different hole concentrations. In this last case the Fermi level is not the bulk 
one and it is obtained self-consistently. 

-0.5 .-I:m -1.0 a)  

Figure 1. Covalent bond energies. E:, versus C!‘* for 
the FCC structure, one s orbital per atom and different 
band fillings, q,  with local charge neulrality. The E: 
are normalized to the corresponding bulk value, and C1 
is the number of nearest neighbours. (a) 7 = 0.6. (b) 
I )  = 0.5; (C) ‘I = 1.4. 

Figure 2 Same as figure L but for d orbitals. (a) I )  = 3; 
(b) ‘I = 5; (C) ‘I = 7. 

In figure 1 we show E,* versus (E:  is the covalent bond energy normalized to 
the corresponding bulk one) for the first case of a bulk atom in an FCC lattice considering 
only one s orbital per atom and different band fillings. If the band is not half filled, local 
charge neutrality is required. We find an approximately linear dependence, as in 161. In 
figure 2 we show the results for the same case as figure 1 but considering d bands instead 
of s bands. It is clearly seen that the dispersion is smaller when d-orbital symmetries are 
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taken into account. When local charge neutrality is imposed it is always possible to fit a 
linear dependence of Ec versus m, but E, does not go to zero for Ct = 0 as it should 
within the tight-binding model with nearest-neighbour interactions. Looking for a better fit 
we found that Ec follows, for d bands, an approximately C:’3 dependence, independently 
of band filling. In figure 3 we show the results obtained for the FCC structure and the same 
band fillings as in figure. 2 but plotting now E,’ versus C:p. 

Figure 3. Same as figure 2 but plotting E: vmus C:”. Figurr 4. E: versus the second moment of the 
local density of states oormalized to the corresponding 
bulk one. (a) BCC lattice with Bnl- and secand- 
neighbour intendons and 7 = 3. (b) The same 
example but with the eenM atom moved from its latice 
site. In units of the lattice parameter Ax = 0.02. 
Ay = 0.05 and Az = -0.03. (e) FCC lattice with the 
central atom moved from its lattice site. Ax = 0.05, 
Ay = 0.02 and Az = -0.03, and ‘1 = 1. In (b) and 
(c) the different topologies are no4 degenerate and the 
figures show 256 and 4096 points mpectively. 

Results for the BCC structure with only nearest-neighbour interactions are very similar to 
the ones shown here for FCC systems and are therefore not shown. In this case the dispersion 
is smaller due to the fact that odd moments are zero in the BCC structure. However, for 
the BCC structure the second-neighbour interactions are known to be significant and it is 



Cohesive energy sersus coordination and second moment 3943 

interesting to show here that in this case Ec is proportional to pi’3 (the second moment of 
the local density of states) 

Therefore for more general plots of the kind of figures 1-3 CI should be considered as the 
effective coordination number within the given model and replaced by !4. In figure 4(a) 
we show Ef versus PL;”~ (p; is the second moment normalized to the corresponding bulk 
one) for the BCC structure and a band filling of three electrons considering nearest- and 
next-nearest-neighbour interactions (but only first-neighbour vacancies as before) and find 
a very good fit. The second-neighbour two-centre integrals are related to the already given 
first-neighbour ones by an rY5 dependence with distance 181. 

To make the dependence of Ec on pz even more evident we moved the central atom away 
from its lattice site and therefore changed the distances to all its neighbours, again using 
the r-5 law for the integrals. Figure 4(b) shows the results obtained for the same example 
as figure 4(a), which are quite surprising. Finally, figure 4(c) shows another example, the 
FCC structure with a band filling of seven electrons and the central atom moved. The pL;’j3 
dependence is also clearly evident. 

For the second case studied, we calculated Ec for an atom in the three surface 
orientations (1  IO), (100) and (1 11) of an FCC structure, with values for C1 equal to 7,s and 9 
and d bands. Even if the environment of the atom studied is very different in surface and bulk 
cases, these energies fall within the dispersion obtained for the corresponding coordination 
number in the bulk calculation with nearest-neighbour vacancies. This naturally implies that 
the contribution of first neighbours is the most important. The effect of moments higher 
than the second one, which involve further neighbours, is responsible for the dispersion in 
energy. 

For the ‘hole net’ we considered an Fcc lattice with a variable number of holes inside a 
cell of 32 sites and d orbitals. The holes were randomly distributed and the cell periodically 
repeated. For each hole concentration the values of E,  for each atom of the cell were 
obtained for only one configuration of the vacancies. For the three concentrations and 
different band fillings considered we obtained again that Ec = In figure. 5 we show 
an example of Ef versus C:’3 for the 12/32-hole net with a band filling of three electrons 
per atom and local charge neutrality. 

In conclusion, we have shown that for a more realistic study of transition-metal 
systems taking into account the symmetry of the relevant d orbitals, a 3 power of the 
effective coordination number or second moment for the cohesive bond energy fits better the 
multi-atom interactions than the square-root dependence suggested by the second-moment 
approximation, the latter being appropriate for s-orbital interactions. The validity of this 
dependence has been tested for different situations: (a) a fixed value of the Fermi level, 
(b) a non-bulk value for the Fermi level, (c) interactions beyond first-nearest-neighbour 
ones. The particular power-law dependence of E ,  (the attractive part of the total energy) 
will show up when studying the dynamics of these systems, for instance melting, diffusion 
and relaxation processes. Molecular-dynamics calculations using this dependence will be 
attempted. It may be possible to improve potentials for computer simulations of transition- 
metal systems without computing moments higher than the second ones but taking into 
account the symmetry of the orbitals which mainly contribute to the band energy. 



3944 J Guevara et a1 

-1.01 

3 4 c2/3 
0 1 2 

1 - i 

Figure 5. E: versus C? for the 12n2-hole net with the FCC Rruchm, d orbitals. local charge 
neutrality and 7 = 3. 
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